翻訳と辞書
Words near each other
・ Mendelevium
・ Mendeley
・ Mendeleyev
・ Mendeleyev Glacier
・ Mendeleyeva
・ Mendeleyevo
・ Mendeleyevo Microdistrict
・ Mendeleyevo, Kaliningrad Oblast
・ Mendeleyevo, Moscow Oblast
・ Mendeleyevsk
・ Mendeleyevskaya
・ Mendeleyevsky
・ Mendeleyevsky District
・ Mendelian error
・ Mendelian genetics of humans exophenotype
Mendelian inheritance
・ Mendelian randomization
・ Mendelian susceptibility to mycobacterial disease
・ Mendelian traits in humans
・ Mendelsohn Affluent Survey
・ Mendelsohn House
・ Mendelsohn's Incessant Visions
・ Mendelson Joe
・ Mendelson's syndrome
・ Mendelssohn & Co.
・ Mendelssohn (surname)
・ Mendelssohn Club
・ Mendelssohn family
・ Mendelssohn Foundation
・ Mendelssohn Glee Club


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Mendelian inheritance : ウィキペディア英語版
Mendelian inheritance

Mendelian inheritance is inheritance of biological features that follows the laws proposed by Gregor Johann Mendel in 1865 and 1866 and re-discovered in 1900. It was initially very controversial. When Mendel's theories were integrated with the Boveri–Sutton chromosome theory of inheritance by Thomas Hunt Morgan in 1915, they became the core of classical genetics while Ronald Fisher combined them with the theory of natural selection in his 1930 book ''The Genetical Theory of Natural Selection'', putting evolution onto a mathematical footing and forming the basis for Population genetics and the modern evolutionary synthesis.
==History==
(詳細はGregor Mendel, a nineteenth-century Austrian monk conducting hybridization experiments in garden peas (''Pisum sativum'') he planted in the backyard of the church. Between 1856 and 1863, he cultivated and tested some 5,000 pea plants. From these experiments, he induced two generalizations which later became known as ''Mendel's Principles of Heredity'' or ''Mendelian inheritance''. He described these principles in a two-part paper, ''Versuche über Pflanzen-Hybriden'' (''Experiments on Plant Hybridization''), that he read to the Natural History Society of Brno on February 8 and March 8, 1865, and which was published in 1866.〔See Mendel's paper in English: (【引用サイトリンク】 author=Gregor Mendel )
Mendel's conclusions were largely ignored. Although they were not completely unknown to biologists of the time, they were not seen as generally applicable, even by Mendel himself, who thought they only applied to certain categories of species or traits. A major block to understanding their significance was the importance attached by 19th-century biologists to the apparent blending of inherited traits in the overall appearance of the progeny, now known to be due to multigene interactions, in contrast to the organ-specific binary characters studied by Mendel.〔 In 1900, however, his work was "re-discovered" by three European scientists, Hugo de Vries, Carl Correns, and Erich von Tschermak. The exact nature of the "re-discovery" has been somewhat debated: De Vries published first on the subject, mentioning Mendel in a footnote, while Correns pointed out Mendel's priority after having read De Vries' paper and realizing that he himself did not have priority. De Vries may not have acknowledged truthfully how much of his knowledge of the laws came from his own work, or came only after reading Mendel's paper. Later scholars have accused Von Tschermak of not truly understanding the results at all.〔
Regardless, the "re-discovery" made Mendelism an important but controversial theory. Its most vigorous promoter in Europe was William Bateson, who coined the terms "genetics" and "allele" to describe many of its tenets. The model of heredity was highly contested by other biologists because it implied that heredity was discontinuous, in opposition to the apparently continuous variation observable for many traits. Many biologists also dismissed the theory because they were not sure it would apply to all species. However, later work by biologists and statisticians such as Ronald Fisher showed that if multiple Mendelian factors were involved in the expression of an individual trait, they could produce the diverse results observed, and thus showed that Mendelian genetics is compatible with natural selection. Thomas Hunt Morgan and his assistants later integrated the theoretical model of Mendel with the chromosome theory of inheritance, in which the chromosomes of cells were thought to hold the actual hereditary material, and created what is now known as classical genetics, which was extremely successful and cemented Mendel's place in history.
Mendel's findings allowed scientists such as Fisher and J.B.S. Haldane to predict the expression of traits on the basis of mathematical probabilities. A large contribution to Mendel's success can be traced to his decision to start his crosses only with plants he demonstrated were true-breeding. He also only measured absolute (binary) characteristics, such as color, shape, and position of the offspring, rather than quantitative characteristics. He expressed his results numerically and subjected them to statistical analysis. His method of data analysis and his large sample size gave credibility to his data. He also had the foresight to follow several successive generations (f2, f3) of pea plants and record their variations. Finally, he performed "test crosses" (back-crossing descendants of the initial hybridization to the initial true-breeding lines) to reveal the presence and proportion of recessive characters.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Mendelian inheritance」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.